
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Bonus lecture: TCP/IP DNS sockets and servers

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

2

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

3

4

Browser Website

Imagine the connection between a browser and a website as a long pipe.
At each end is a socket you can read or write from as if it was a file.
Anything written into one end pops out and can be read at the other.

HTTP over TCP/IP

5

Browser Website

To read a page from a website:
1. Look up the TCP/IP address of the website.
2. Create a socket.
3. Connect the socket to that address.
4. Send a GET message to request the page.
5. Read what comes back.

HTTP over TCP/IP

Reading and serving webpages

We’ll discuss what’s needed to build the first of three small
projects I assign in my search engine class:

1. LinuxGetUrl Read an HTTP page.

2. LinuxGetSsl Read an HTTPS page.

3. LinuxTinyServer A simple HTTP server.

6

7

tcsh-3% head LinuxTinyServer.cpp
// Linux tiny HTTP server.
// Nicole Hamilton nham@umich.edu

// This variation of LinuxTinyServer supports a simple plugin interface
// to allow "magic paths" to be intercepted.

// Usage: LinuxTinyServer port rootdirectory

// Compile with g++ -pthread LinuxTinyServer.cpp -o LinuxTinyServer
// To run under WSL (Windows Subsystem for Linux), must elevate with
tcsh-4% ls website
Images Styles index.htm
tcsh-5% ./LinuxTinyServer 5000 website
Listening on 0.0.0.0:5000

Here’s LinuxTinyServer.

8

tcsh-5% head LinuxGetUrl.cpp
// Linux get URL utility that copies the HTTP page to stdout.
// Nicole Hamilton nham@umich.edu

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <iostream>
#include <string.h>
#include <string>
tcsh-6% LinuxGetUrl
Usage: LinuxGetUrl url
tcsh-7% ./LinuxGetUrl http://localhost:5000/index.htm | head -20
Service = http, Host = localhost, Port = 5000, Path = index.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

LinuxGetUrl does an HTTP Get.

9

tcsh-5% ./LinuxTinyServer 5000 website
Listening on 0.0.0.0:5000

Connection accepted from 127.0.0.1:56032

GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

Requested path = /index.htm
Actual path = website/index.htm

HTTP/1.1 200 OK
Content-Length: 8964
Connection: close
Content-Type: text/html

The server sees the Get request and returns the file.

10

tcsh-7% ./LinuxGetUrl http://localhost:5000/index.htm | head -20
Service = http, Host = localhost, Port = 5000, Path = index.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 200 OK
Content-Length: 8964
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

tcsh-8%

LinuxGetUrl reads the file.

11

tcsh-2% ./LinuxGetUrl http://localhost:5000/zork.htm
Service = http, Host = localhost, Port = 5000, Path = zork.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /zork.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 404 Not Found
Content-Length: 0
Connection: close

tcsh-3%

Errors are reported 400 and other codes.

We’ll now go through the mechanics of making
this happen.

12

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

13

14

Application

Transport

Internet

Network Access

DHCP, DNS, FTP, HTTP, HTTPS,
POP, SMTP, SSH, etc.

TCP and UDP

IP address: IPv4 or IPv6

Link level: MAC address
Physical: Cable, fiber, wireless

TCP/IP Model

Applications
DHCP Dynamic Host Configuration Protocol. A DHCP server

assigns an IP address to each device on a network.

DNS Domain Name System. A decentralized naming system that
allows domain names to be translated to IP addresses.

FTP File Transfer Protocol.

HTTP Hypertext Transfer Protocol for web browsers and web
servers.

HTTPS Hypertext Transfer Protocol Secure.

POP Post Office Protocol for transferring email.

SMTP Simple Mail Transfer Protocol.

SSH Secure Shell for remote login.

15

Transport protocols
TCP Transmission Control Protocol. Reliable, ordered, error-

checked delivery of a byte stream.

UDP User Datagram Protocol. Connectionless communication.
Checksums for error detection. No guarantee of delivery,
ordering or protection from duplicates.

16

IP addresses
IPv4 Internet Protocol version 4. Uses a 32-bit big-endian

address space. Uses a dotted notation, each group of 8 bits,
starting at the high end, written as a decimal number, e.g.,
umich.edu = 141.211.243.251. Now facing address
exhaustion.

IPv6 Internet Protocol version 6. Uses a 128-bit big-endian
address. Written as 8 groups of 4 hex characters separated
by colons. If a group is all zeros, it can be omitted, e.g.,
2001:db8::8a2e:370:7334.

17

IP routing

Uses a routing table to select a next hop router.

Given a destination IP address, D, and network prefix, N:

if (N matches a directly connected network address)
Deliver datagram to D over that network link;

else if (The routing table contains a route for N)
Send datagram to the next-hop address listed in the routing table;

else if (a default route exists)
Send datagram to the default route;

else
Send a forwarding error message to the originator;

18

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

19

To get an IP address

1. Parse the HTTPS path to identify the host (domain
name) we’re trying to reach.

2. Find the IP address for that host using a Domain
Name Server (DNS).

20

21

Type Name Value TTL Actions
A @ 160.153.46.5 600 seconds
A admin 160.153.46.5 600 seconds
A mail 160.153.46.5 600 seconds
:
CNAME webmail @ 1 Hour
CNAME www @ 1 Hour
:
MX @ mail.hamiltonlabs.com (Priority: 0) 1 Hour Edit
NS @ ns61.domaincontrol.com 1 Hour
NS @ ns62.domaincontrol.com 1 Hour
SOA @ Primary nameserver: ns61.domaincontrol.com. 600 seconds

DNS Records

An A record defines a host address.
A CNAME record defines a canonical name for alias.
An MX (Mail eXchange) record defines a mail server.
An NS record defines a name server.
An SOA (Start of Authority) defines the primary name server.

DHCP

22

We usually rely on DHCP
(Dynamic Host Configuration
Protocol) to assign an IP address
to our machine and DNS server.

23

class ParsedUrl
{
public:

const char *CompleteUrl;
char *Service,

*Host,
*Port,
*Path;

ParsedUrl(const char *url);
~ParsedUrl();

};

Let’s assume a simple mechanism for parsing a full URL into the components.

24

Example use:

ParsedUrl url("http://localhost:5000/index.htm");
cout << "Service = " << url.Service <<

", Host = " << url.Host <<
", Port = " << url.Port <<
", Path = " << url.Path << endl;

Should print:

Service = http, Host = localhost, Port = 5000, Path = index.htm

25

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

Given node and service, which identify an Internet host and a service,
getaddrinfo() returns one or more addrinfo structures, each of which contains
an Internet address that can be specified in a call to bind(2) or connect(2).

26

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

Given node and service, which identify an Internet host and a service,
getaddrinfo() returns one or more addrinfo structures, each of which contains
an Internet address that can be specified in a call to bind(2) or connect(2).

27

// Get the host address, supplying hints for
// what we're looking for.

struct addrinfo *address, hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

int getaddrResult = getaddrinfo(url.Host,
*url.Port ? url.Port : "80", &hints, &address);

Here’s an example use.

Later, it must be freed.

freeaddrinfo(address);

28

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

This is what the addrinfo structure looks like. It contains an Internet address
that can be specified in a call to bind(2) or connect(2).

PrintAddress((sockaddr_in *)address->ai_addr,
sizeof(struct sockaddr));

The interesting part is the ai_addr, the actual IP address, which we can print.

29

void PrintAddress(const sockaddr_in *s, const size_t saLength)
{
const struct in_addr *ip = &s->sin_addr;
uint32_t a = ntohl(ip->s_addr);

cout << "Host address length = " << saLength << " bytes" << endl;
cout << "Family = " << s->sin_family <<

", port = " << ntohs(s->sin_port) <<
", address = " << (a >> 24) << '.' <<

((a >> 16) & 0xff) << '.' <<
((a >> 8) & 0xff) << '.' <<
(a & 0xff) << endl;

}

Here’s a simple print routine assuming an IPv4 address.

30

Example use:

int getaddrResult = getaddrinfo("www.nytimes.com", "80",
&hints, &address);

PrintAddress((sockaddr_in *)address->ai_addr,
sizeof(struct sockaddr));

Should print:

Host address length = 16 bytes
Family = 2, port = 80, address = 151.101.185.164

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

31

32

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

socket() creates an endpoint for communication and returns a file descriptor that can
be used for reading and writing.

33

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

The domain argument specifies a communication domain. Here are the most
common:

Name Purpose
AF_UNIX, AF_LOCAL Local communication
AF_INET IPv4 Internet protocols
AF_INET6 IPv6 Internet protocols

34

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

The socket has the indicated type, which specifies the communication semantics. The
most common is SOCK_STREAM, a sequenced, reliable connection with two-way byte
streams.

The protocol is usually IPPROTO_TCP.

35

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

connect() connects the socket to the specified IP address. The addrlen argument
specifies the size of addr structure.

A sockaddr * is actually a generic pointer caste from one of several possible address
structures, depending on the type of a connection. For an internet connection, you’ll
actually use a sockaddr_in (an internet sockaddr).

36

// Create a TCP/IP socket.

int s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
assert(s != -1);

// Connect the socket to the host address.

int connectResult = connect(s, address->ai_addr,
sizeof(struct sockaddr));

assert(connectResult == 0);

Here’s an example creating a socket and connecting it to an address.

37

#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t len, int flags);
ssize_t recv(int sockfd, void *buf, size_t len, int flags);

send() writes data into the socket. recv() reads data. Flags allow close-on-exec,
noblocking reads/writes and other options.

The only difference between send() and write() or between recv() and read() is the
presence of flags. With a zero flags argument, send() is equivalent to write() and recv()
is equivalent to write().

38

GET / HTTP/1.1
Host: www.nytimes.com
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

Here’s a sample GET message we might send.

Some sites will not even respond without a User-Agent field. It’s a free text
field and can be anything as long as it exists. It’s typically the name of the
software product that generated the Get + a slash followed by a version
number. The OS or build environment is usually given in parens.

(In 398, I required students to put their contact info into the User-Agent field
so complaints would go to them, not me.)

The Accept: and Accept-Encoding: fields are not required but typically
provided.

Host: parameter

Lots of servers host lots of websites at the same IP address and
port number.
They distinguish which website you mean by the Host:
parameter.
So, it’s not redundant.

39

Not redundant.
The server may
host any number
of websites at the
same IP address.
It uses the Host:
parameter to
decide which
website you
mean.

40

tcsh-2% ./LinuxGetSsl https://nicolehamilton.com
Service = https, Host = nicolehamilton.com, Port = , Path =
Host address length = 16 bytes
Family = 2, port = 443, address = 160.153.46.5
GET / HTTP/1.1
Host: nicolehamilton.com
User-Agent: LinuxGetSsl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 200 OK
Date: Thu, 19 Sep 2019 17:02:10 GMT
Server: Apache
Upgrade: h2,h2c
Connection: Upgrade, close
Last-Modified: Thu, 11 Oct 2018 21:59:57 GMT
ETag: "c4206db-3f6f-577fb177483a1"
Accept-Ranges: bytes
Content-Length: 16239
:

My websites are on a GoDaddy machine with lots of other websites.

Not redundant.
The server may
host any number
of websites at the
same IP address.
It uses the Host:
parameter to
decide which
website you
mean.

41

tcsh-2% ./LinuxGetSsl https://nicolehamilton.com
Service = https, Host = nicolehamilton.com, Port = , Path =
Host address length = 16 bytes
Family = 2, port = 443, address = 160.153.46.5
GET / HTTP/1.1
Host: nicolehamilton.com
User-Agent: LinuxGetSsl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 200 OK
Date: Thu, 19 Sep 2019 17:02:10 GMT
Server: Apache
Upgrade: h2,h2c
Connection: Upgrade, close
Last-Modified: Thu, 11 Oct 2018 21:59:57 GMT
ETag: "c4206db-3f6f-577fb177483a1"
Accept-Ranges: bytes
Content-Length: 16239
:

So, both nicolehamilton.com and hamiltonlabs.com are at 160.153.46.5:443.

Not redundant.
The server may
host any number
of websites at the
same IP address.
It uses the Host:
parameter to
decide which
website you
mean.

42

tcsh-3% ./LinuxGetSsl https://hamiltonlabs.com
Service = https, Host = hamiltonlabs.com, Port = , Path =
Host address length = 16 bytes
Family = 2, port = 443, address = 160.153.46.5
GET / HTTP/1.1
Host: hamiltonlabs.com
User-Agent: LinuxGetSsl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 200 OK
Date: Thu, 19 Sep 2019 17:03:31 GMT
Server: Apache
Upgrade: h2,h2c
Connection: Upgrade, close
Last-Modified: Sat, 15 Jul 2017 22:39:19 GMT
ETag: "c420859-1a31-55462d61856cf"
Accept-Ranges: bytes
Content-Length: 6705
:

Both nicolehamilton.com and hamiltonlabs.com are at 160.153.46.5:443.

43

The server response depends on which Host: was specified.

44

If you specify Host: 160.153.46.5, you get GoDaddy’s login page for that server.

45

string getMessage;
:
send(s, getMessage.c_str(), getMessage.length(), 0);

Here’s an example sending the Get message.

46

char buffer[10240];
int bytes;

while ((bytes = recv(s, buffer, sizeof(buffer), 0)) > 0)
write(1, buffer, bytes);

Here’s an example reading from a socket and writing to stdout.

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

47

48

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main(int argc, char **argv)
{
// Parse the URL

// Get the host address.

// Create a TCP/IP socket.

// Connect the socket to the host address.

// Send a GET message.

// Read from the socket until there's no more data, copying it to
// stdout.

// Close the socket and free the address info structure.
}

Here’s the entire main(), minus only all the code.

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

49

50

Browser Website

Under HTTPS, data is encrypted before being sent and decrypted when
received using a public key mechanism that allows both ends to agree on
a secret session key.

Done using a Secure Socket Layer (SSL) wrapper around a regular socket.

HTTPS over TCP/IPencrypted

decrypted encrypted

decrypted

51

Browser Website

Under HTTPS, data is encrypted before being sent and decrypted when
received using a public key mechanism that allows both ends to agree on
a secret session key.

Done using a Secure Socket Layer (SSL) wrapper around a regular socket.

Here, we’ll use the OpenSSL library.

HTTPS over TCP/IPencrypted

decrypted encrypted

decrypted

52

Browser Website

To read a page from a website:
1. Look up the TCP/IP address of the website.
2. Create a socket.
3. Connect the socket to that address.
4. Send a GET message to request the page.
5. Read what comes back.

HTTP over TCP/IP

53

To read a page from a website:
1. Look up the TCP/IP address of the website.
2. Create a socket.
3. Connect the socket to that address.
4. Build an SSL layer and establish a secure connection.
5. Send a GET message to request the page.
6. Read what comes back.

Browser Website

HTTPS over TCP/IPencrypted

decrypted encrypted

decrypted

54

To read a page from a website:
1. Look up the TCP/IP address of the website.
2. Create a socket.
3. Connect the socket to that address.
4. Build an SSL layer and establish a secure connection.
5. Send a GET message to request the page.
6. Read what comes back.

Browser Website

HTTPS over TCP/IPencrypted

decrypted encrypted

decrypted

Secret communications
Traditionally, two parties would have to agree
on a method and key for secret
communications.

A book owned by both parties might be used
with messages encrypted as references to
page, line and word numbers, PPPLLWW.

Mechanical methods like the German Enigma
relied on secret hardware and a key.

Problems:

1. You need a way of communicating
securely how you'll do it before you can
do it.

2. Secrecy depends on the secrecy of both
the key and the method.

Image source: https://en.wikipedia.org/wiki/Enigma_machine

https://en.wikipedia.org/wiki/Enigma_machine

Insights

1. The security of the system should only depend on
secrecy of the key, not the secrecy of the method.

2. It should be possible for anyone to see how
messages are encrypted, given the key, but without
the key, knowing how it's done isn't helpful in
breaking the message.

Diffie-Hellman key exchange, 1976

Image sources: https://en.wikipedia.org/wiki/Whitfield_Diffie
https://en.wikipedia.org/wiki/Martin_Hellman
https://en.wikipedia.org/wiki/Ralph_Merkle

Whitfield Diffie Martin Hellman Ralph Merkle

https://en.wikipedia.org/wiki/Whitfield_Diffie
https://en.wikipedia.org/wiki/Martin_Hellman
https://en.wikipedia.org/wiki/Ralph_Merkle

Ron Rivest

Image sources: https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

Adi Shamir Leonard Adleman

RSA public key encryption, 1978

https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

Public key encryption
Uses pairs of private and public keys that are related by a
mathematical formula that’s hard to reverse, factoring of very large
numbers.

To get started:
1. I create (or pick) a private key which I keep secret,
2. then use that to create a public key, which I can share with the

world.

If I want to send you an encrypted message:
1. I encrypt using my private key and your public key.
2. You decrypt using my public key and your private key.

Does not require a secure channel for initial exchange of secret keys.

SSL / TLS Handshake

Sends a message to server with a list of cipher suites and SSL/TLS
versions it supports.

Chooses a cipher suite and TLS version and sends its certificate and
public key.

Verifies certificate, extracts public key, uses it to encrypt a new pre-
master key, which it sends to the server.

Uses its private key to decrypt the pre-master key.

Both use the pre-master key to compute a shared secret key.

Sends encrypted message announcing it's switching to encryption with
the shared secret.

Decrypts and verifies message, sends message encrypted with the
shared secret.

Both use encryption using the shared secret for the rest of the session.

Client Server

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

61

OpenSSL
The SSL/TLS
handshake it too
complex and
rigorous to write
on our own.

OpenSSL is a
popular library.

It works on both
Windows and
Linux.

62

OpenSSL
sudo apt-get install libssl-dev

#include <openssl/ssl.h>

g++ LinuxGetSsl.cpp -lssl –lcrypto
-o LinuxGetSsl

63

1. Install the OpenSSL library.

2. Include the openssl
header.

3. Compile and link the SSL
and crypto libraries.

64

#include <openssl/ssl.h>

int SSL_library_init(void);

SSL_library_init() initializes the SSL library.

65

#include <openssl/ssl.h>

int SSL_library_init(void);
SSL_CTX *SSL_CTX_new(const SSL_METHOD *method);
int SSL_CTX_free(SSL_CTX *ctx);
SSL *SSL_new(SSL_CTX *ctx);

SSL_library_init() initializes the SSL library.
SSL_CTX_new() creates a new SSL_CTX context object as framework to establish
TLS/SSL enabled connections.
SSL_CTX_free() frees the SSL_CTX object.
SSL_new() creates a new SSL structure need to hold the data for a TLS/SSL
connection.

66

// Build the SSL layer.

SSL_library_init();

SSL_CTX *ctx = SSL_CTX_new(SSLv23_method());
assert(ctx);
SSL *ssl = SSL_new(ctx);
assert(ssl);

Here’s an example initializing the SSL layer.

67

#include <openssl/ssl.h>

int SSL_set_fd(SSL *ssl, int fd);

SSL_set_fd() sets the file descriptor fd as the input/output facility for the TLS/SSL
(encrypted) side of ssl. fd will typically be the socket file descriptor of a network
connection.

68

#include <openssl/ssl.h>

int SSL_connect(SSL *ssl);

SSL_connect() initiates the TLS/SSL handshake with a server.

69

// Fill in the socket we'll be using.

SSL_set_fd(ssl, s);

// Establish an SSL connection.

int sslConnectResult = SSL_connect(ssl);
assert(sslConnectResult == 1);

Here’s an example initializing the SSL layer.

70

#include <openssl/ssl.h>

int SSL_write(SSL *ssl, const void *buf, int num);
int SSL_read(SSL *ssl, void *buf, int num);

SSL_write() writes num bytes from the buffer buf into the specified ssl connection.
SSL_read() tries to read num bytes from the specified ssl into the buffer buf.

71

while ((bytes = SSL_read(ssl, buffer,
sizeof(buffer))) > 0)

write(1, buffer, bytes);

Here’s an example reading and writing.

72

SSL_shutdown(ssl);
SSL_free(ssl);
SSL_CTX_free(ctx);

Shutdown and free up resources at the end.

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

73

74

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <openssl/ssl.h>
#include <netdb.h>

int main(int argc, char **argv)
{
// Parse the URL

// Get the host address.

// Create a TCP/IP socket.

// Connect the socket to the host address.

// Build an SSL layer and set it to read/write
// to the socket we've connected.

// Send a GET message.

// Read from the SSL socket until there's no more data, copying it to
// stdout.

// Close the socket and free the address info structure.
}

Here’s the entire main() for LinuxGetSsl, minus only all the code.

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

75

A simple web server

Two parts:

1. The HTTP server.

2. A plugin that can exchange JSON with a webpage.

76

LinuxTinyServer

A very minimal web server for Linux.

1. It begins listing on a socket for connection requests from
browser.

2. Each time it gets a request, it creates a thread with a new
socket to talk to the client.

3. If it’s a “magic path”, it can call a plugin module.

4. Otherwise, it handles GET requests by serving up the
specified file if it exists.

77

78

tcsh-5% head LinuxTinyServer.cpp
// Linux tiny HTTP server.
// Nicole Hamilton nham@umich.edu

// This variation of LinuxTinyServer supports a simple plugin
interface
// to allow "magic paths" to be intercepted.

// Usage: LinuxTinyServer port rootdirectory

// Compile with g++ -pthread LinuxTinyServer.cpp -o LinuxTinyServer
// To run under WSL (Windows Subsystem for Linux), must elevate with
tcsh-6% ./LinuxTinyServer
Usage: ./LinuxTinyServer port rootdirectory
tcsh-7%

LinuxTinyServer takes a port number and a root directory for a website.

79

tcsh-6% ./LinuxTinyServer
Usage: ./LinuxTinyServer port rootdirectory
tcsh-7% ls website
Images Styles index.htm
tcsh-8% ./LinuxTinyServer 5000 website
Listening on 0.0.0.0:5000

LinuxTinyServer opens a socket and begins listening for connections.

80

tcsh-8% ./LinuxTinyServer 5000 website
Listening on 0.0.0.0:5000

Connection accepted from 127.0.0.1:54690

GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

Requested path = /index.htm
Actual path = website/index.htm

HTTP/1.1 200 OK
Content-Length: 8964
Connection: close
Content-Type: text/html

LinuxTinyServer responds with the requested page. If you want index.htm,
you must ask for it. LTS will not look for it if you give only a directory path.

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

81

bind(), listen() and accept()

The basic steps to a web server:

1. Creates two socket variables, one for listening, the other
when a new client connects.

2. Build a sockaddr_in structure specifying internet protocol,
port number, any IP address, TCP stream.

3. Binds the socket to that address.

4. Enters a loop where it begins listening.

5. Each time it gets a connection request it spawns a thread to
talk to the client.

82

bind()
#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

83

bind() is used to
connect a socket to
a particular
address, protocol
and port where it
can listen.

bind()
#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

84

bind() is used to
connect a socket to
a particular
address, protocol
and port where it
can listen.

All of that is
specified in an
addrinfo structure.

getsockname()

85

If you specify port 0, the system will assign one.

Here’s how you can find out what you were assigned.

struct sockaddr_in listenPort;
socklen_t listenPortLength = sizeof(listenPort);
memset(&listenPort, 0, sizeof(listenPort));
int getsocknameResult = getsockname(listenSocket,

(sockaddr *)&listenPort, &listenPortLength);
assert(getsocknameResult != -1);
port = ntohs(listenPort.sin_port);

listen()
#include <sys/types.h>
#include <sys/socket.h>

int listen(int sockfd, int backlog);

86

listen() marks the
socket as one to be
used for accepting
incoming
connection
requests.

The backlog is the
maximum queue
length of pending
connections.

listen()
#include <sys/types.h>
#include <sys/socket.h>

int listen(int sockfd, int backlog);

87

listen() marks the
socket as one to be
used for accepting
incoming
connection
requests.

The backlog is the
maximum queue
length of pending
connections.

SOMAXCONN is a system-configured default
maximum socket queue length.

(Under WSL Ubuntu, it's defined as 128 in
/usr/include/x86_64-linux-gnu/bits/socket.h.)

listen()
#include <sys/types.h>
#include <sys/socket.h>

int listen(int sockfd, int backlog);

88

Any client
anywhere on the
web that has your
IP and port address
can try to connect
to you.

SOMAXCONN is a system-configured default
maximum socket queue length.

(Under WSL Ubuntu, it's defined as 128 in
/usr/include/x86_64-linux-gnu/bits/socket.h.)

accept()
#include <sys/types.h>
#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr,
socklen_t *addrlen);

89

accept() waits
until a client tries
to do a connect()
and then returns
socket file
descriptor that’s
created.

The sockaddr
that’s returns tells
you the client’s IP
address.

90

int main(int argc, char **argv)
{
// Check usage and arguments.

// Create two sockets, one for listening for new
// connection requests, the other for talking to each
// new client.

// Create socket address structures to go with each
// socket, filling in details of where we'll listen.

// Create the listenSocket, specifying that we'll r/w
// it as a stream of bytes using TCP/IP.

// Bind the listen socket to the IP address and protocol
// where we'd like to listen for connections.

// Begin listening for clients to connect to us.

// Accept each new connection and create a thread to talk with
// the client over the new talk socket that's created by Linux
// when we accept the connection.

// Close the listen socket.
}

Passing the talk socket to the child

When creating a child
thread, you get to pass a
void *, usually a pointer to
an object with whatever
information the child needs.

Since the server expects to
get lots of connection
requests, it can’t pass a
pointer to a local or global
variable that will quickly be
overwritten.

Solution is to pass a pointer
to an object on the heap
and let the child delete it.

91

while ((talkAddressLength = sizeof(talkAddress),
talkSocket = accept(...)) && talkSocket != -1)

{
pthread_t child;
pthread_create(&child, nullptr, Talk,

new int(talkSocket));
pthread_detach(child);
}

92

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

Compile and link with -pthread.

The pthread_create() function starts a new thread in the calling process.
The new thread starts execution by invoking start_routine(); arg is passed
as the sole argument of start_routine().

The pthread_join() function waits for the thread specified by thread to
terminate. If that thread has already terminated, then pthread_join()
returns immediately.

pthread_detach() causes the thread’s resources to be released automatically
when the thread terminates.

Using boost

Here’s how you do it with
boost threads, which let
you pass objects, not just
a void pointer.

Install boost using:
sudo apt-get install
libboost-all-dev

93

#include <boost/thread/thread.hpp>

while ((talkAddressLength = sizeof(talkAddress),
talkSocket = accept(...)) && talkSocket != -1)

{
boost::thread talkThread(Talk, talkSocket);
talkThread.detach();
}

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

94

The talk thread

The Talk thread looks for a
GET message and replies
with the requested file.

But it also has a plugin
interface that allows a
server application to
intercept “magic paths”.

95

void *Talk(void *talkSocket)
{
// Cast from void * to int * to recover the talk
// socket id then delete the copy passed on the heap.

// Allocate a buffer for reading the incoming
// request and for reading the requested file.

// Do a recv() to get the request.

// Parse the request to find the action and path
// being requested.

// Watch for a plugin that intercepts this path.

// If it's a GET and the path is found in the website
// directory, return it with an HTTP/1.1 200 OK
// message, otherwise with a 403 or 404.

// Close the talk socket.
}

The talk thread

It can’t just paste the
requested path onto the
end of the website directory
path.

Must watch for “..”
segments and forbid access
outside the website.

96

void *Talk(void *talkSocket)
{
// Cast from void * to int * to recover the talk
// socket id then delete the copy passed on the heap.

// Allocate a buffer for reading the incoming
// request and for reading the requested file.

// Do a recv() to get the request.

// Parse the request to find the action and path
// being requested.

// Watch for a plugin that intercepts this path.

// If it's a GET and the path is found in the website
// directory, return it with an HTTP/1.1 200 OK
// message, otherwise with a 403 or 404.

// Close the talk socket.
}

The boost version

In the boost version,
arguments are passed
directly, not as a void
pointer.

97

void Talk(int talkSocket)
{
// Allocate a buffer for reading the incoming
// request and for reading the requested file.

// Do a recv() to get the request.

// Parse the request to find the action and path
// being requested.

// Watch for a plugin that intercepts this path.

// If it's a GET and the path is found in the website
// directory, return it with an HTTP/1.1 200 OK
// message, otherwise with a 403 or 404.

// Close the talk socket.
}

Agenda
1. Read a webpage.
2. TCP/IP.
3. DNS.
4. Sockets.
5. LinuxGetUrl
6. Read an HTTPS webpage.
7. TLS, SSL and the OpenSSL library.
8. LinuxGetSSL.
9. TinyLinuxServer.
10. bind(), listen() and accept().
11. The Talk() thread.
12. A plugin interface.

98

The plugin interface

The Talk thread looks for a
GET message and replies
with the requested file.

But it also has a plugin
interface that allows a
server application to
intercept “magic paths”.

99

class PluginObject
{
public:

// MagicPath returns true if this is a path
// the plugin intercepts.

virtual bool MagicPath(string path) = 0;

// The request passed to ProcessRequest is
// the raw contents of the HTTP request as
// read from the talk socket.

// Whatever is returned is written unchanged
// to the socket (and to the client) with a
// proper HTTP header.

string ProcessRequest(string request) = 0;

virtual ~PluginObject()
{
}

};

The plugin interface

The plugin registers itself
by setting a global
pointer.

100

// The constructor for any plugin should set
// Plugin = this so that LinuxTinyServer knows
// it exists and can call it.

extern PluginObject *Plugin;

The plugin interface

The plugin registers itself
by setting a global
pointer.

The initial value is null.

101

// The constructor for any plugin should set
// Plugin = this so that LinuxTinyServer knows
// it exists and can call it.

#include "Plugin.h"
PluginObject *Plugin = nullptr;

The plugin interface

Example: The new EECS
280 P4 Web project.

The plugin constructor
registers itself by setting
the global pointer.

102

class P4_Web : public PluginObject
{
public:

bool MagicPath(const string path)
{
// Return true if this is a path that
// this plugin intercepts.
}

string ProcessRequest(const string request)
{
// Read the request and return a string
// with the proper HTTP header and content.
}

P4_Web()
{
// Register this plugin.
Plugin = this;
}

~P4_Web()
{
}

};

https://eecs280staff.github.io/
p4-web/

https://eecs280staff.github.io/p4-web/

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Bonus lecture: TCP/IP DNS sockets and servers
	Agenda
	Agenda
	Slide Number 4
	Slide Number 5
	Reading and serving webpages
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Agenda
	Slide Number 14
	Applications
	Transport protocols
	IP addresses
	IP routing
	Agenda
	To get an IP address
	Slide Number 21
	DHCP
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Agenda
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Host: parameter
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Agenda
	Slide Number 48
	Agenda
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Secret communications
	Insights
	Diffie-Hellman key exchange, 1976
	Slide Number 58
	Public key encryption
	SSL / TLS Handshake
	Agenda
	OpenSSL
	OpenSSL
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Agenda
	Slide Number 74
	Agenda
	A simple web server
	LinuxTinyServer
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Agenda
	bind(), listen() and accept()
	bind()
	bind()
	getsockname()
	listen()
	listen()
	listen()
	accept()
	Slide Number 90
	Passing the talk socket to the child
	Slide Number 92
	Using boost
	Agenda
	The talk thread
	The talk thread
	The boost version
	Agenda
	The plugin interface
	The plugin interface
	The plugin interface
	The plugin interface

